12 на 5 – DC — DC преобразователь напряжения с 12 на 5 вольт. Схема и описание

Содержание

DC — DC преобразователь напряжения с 12 на 5 вольт. Схема и описание

В настоящее время, импульсные преобразователи используются практически везде и очень часто заменяют классические линейные стабилизаторы, на которых, как правило, при больших токах происходят значительные потери в виде тепла.

Приведенная здесь схема является простым импульсным понижающим преобразователем (Step-Down) с 12В до 5В. Схема построена на основе популярной и недорогой микросхеме MC34063.

Устройство предназначено для работы с автомобильной бортовой сетью 12В и может использоваться для зарядки/питания GPS навигаторов или мобильных телефонов, оснащенных разъемом USB.

В режиме ожидания схема полностью отключается от источника питания, а во время нормальной работы отключается сразу же после отключения нагрузки. Запуск преобразователя осуществляется путем кратковременного нажатия на кнопку и если к выходу не была ранее подключена нагрузка, например телефон, то преобразователь автоматически выключится.

Описание работы преобразователя напряжения с 12 на 5 вольт

Как уже было сказано ранее, схема построена на микросхеме MC34063, которая представляет собой контроллер, содержащий основные компоненты, необходимые для изготовления DC-DC преобразователей.

MC34063 содержит температурную компенсацию, источник опорного напряжения, компаратор и генератор с регулируемым заполнением. Кроме того, данная микросхема содержит схему ограничения тока и внутренний ключ, который может работать с токами до 1,5 А.

Для изготовления преобразователя требуется ОУ, дроссель, диод и несколько резисторов и конденсаторов. На рисунке ниже представлена полная принципиальная схема преобразователя.

Сердцем устройства является уже упомянутый ранее чип DD2 (MC34063), а так же дроссель L1 и диод Шоттки VD1. Диод выполняет очень важную роль — благодаря ему происходит закрытие контура для протекания тока от дросселя L1, возникающего после отключения внутреннего выходного ключа MC34063.

Конденсатор C3 определяет частоту работы внутреннего генератора DD2 и при емкости в 470pf частота будет составлять около 50 кГц. Резистор R5 отвечает за ограничение тока преобразователя и через него протекает весь импульсный ток, поступающий далее на дроссель L1. Ограничение тока установлено на уровне около 1,1 А.

Конденсатор C1 фильтрует напряжение питания. Выходной фильтр представляет собой конденсатор C4, а стабилитрон VD3 мощностью 1,3 Вт защищает схему от возможного кратковременного повышения напряжения.

Очень важным элементом является резистивный делитель напряжения R3, R7, так как он отвечает за величину выходного напряжения. Их соотношение подобрано таким образом, что при выходном напряжении 5В на входе 5 компаратора микросхемы DD2 было напряжение 1,25В.

Большим преимуществом данной схемы является возможность автоматического выключения питания после отключения нагрузки. За эту функцию отвечает транзистор VT1 и резисторы R1,R2. В выключенном состоянии резистор R1 обеспечивает правильную отсечку транзистора VT1. Запуск системы осуществляется через кратковременное нажатие кнопки SW1.

Преобразователь запускается, а транзистор VT2 далее поддерживает низкий уровень на базе VT1. Резистор R2 ограничивает ток базы транзистора VТ1.

Для контроля тока, потребляемого нагрузкой, используется операционный усилитель DD1 (LM358). Он работает в качестве неинвертирующего усилителя с коэффициентом усиления равным 1000. Коэффициент усиления определяется номиналами резисторов R8 и R9.

Конденсатор C2 фильтрует напряжение питания усилителя. Для управления транзистором VT2 используется делитель напряжения на резисторах R4 и R6, с коэффициентом деления 2.

Незначительное падение напряжения на измерительном резисторе (шунте) R11 порядка 5-6мВ приведет к открытию транзистора VT2 и поддержанию работы преобразователя. Таким образом, для поддержания работы преобразователя достаточно чтобы ток потребления был порядка 25-30мА. Светодиод VD2 выполняет роль индикатора питания, а его ток ограничен резистором R10.

Скачать рисунок печатной платы (80,4 Kb, скачано: 1 109)

Источник

www.joyta.ru

Автомобильный преобразователь напряжения с 12 вольт на 5 вольт 📹

 Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт.  Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт. То есть мы разберем и относительно бесперспективные варианты на резисторах и транзисторе и поговорим о микросборках и схемах с использованием ШИМ, для реализации преобразователей напряжения в машине с 12 на 5 вольт. Итак, начнем.

Как из 12 вольт сделать 5 вольт с помощью резисторов

Использование резистора для снижения питающего напряжения  нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения  резистора. Резистор — пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая  пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.
 Второй минус резистора это его относительно небольшая мощность.  Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать. I=P/U=3/12=0,25 А. То есть 250 мА. Этого явно не хватит ни на видеорегистратор, ни навигатору. По крайней мере, с должным запасом.
 Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом.  То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
 Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.

Как из 12 вольт сделать 5 вольт с помощью транзистора

 Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей. Благо сейчас энных уйма и этот вариант, как и предыдущий, можно рассматривать также как один из возможных, но не предпочтительных.  Самым большим плюсом относительно варианта с резисторами будет активное изменение сопротивления, за счет применяемого стабилитрона и транзистора.  Именно эти радиоэлементы способны обеспечит стабилизацию. Теперь обо всем подробнее.

 Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности.  Итак, схема на транзисторе вполне работоспособна и применима. Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!

Как из 12 вольт сделать 5 вольт с помощью микросхемы

 На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.

Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А. Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.

Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство. Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…

Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ

 Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т.д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие».  Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.

Вот так она выглядит «вживую».

Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее. 

Подводя итог о преобразователе напряжения с 12 на 5 вольт

 Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного  напряжения.  Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».
 Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.
 Применение микросхем один из наиболее распространенных вариантов на сегодняшний день. Ну, а микросхемы с ШИМ это то, к чему все и идет. Именно так видятся наиболее перспективные и выгодные варианты преобразователей напряжения с 12 на 5 вольт.
 Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.

Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.

autosecret.net

Схема преобразователя питания DC/DC 12-5В – Поделки для авто

Сразу после первого вояжа на машине с семьёй на море возникла идея сделать в автомобиле стационарную разводу розеток под USB для зарядки мобильных устройств. Кстати сейчас новые автомобили стали уже комплектовать с инверторами на 220В и соответственно розетками на 5В.

Я таких машин ещё не встречал.
Да, в продаже если и есть адаптеры на для мобильных ПК то они предназначены для зарядки одного, максимум двух устройств при условии, что второе устройство не такое уж мощное. У меня в машине и так постоянно подключены 3 адаптера, но спрятаны они под колодкой предохранителей.

А пассажиры пользуются адаптером, который втыкается в разъём в пепельнице, что мне не очень удобно, так как его постоянно задеваю при переключении передач. После дня пути обычно у пассажиров разрежаются все устройства и начинается возня с зарядками мобильников. Приходится даже свой навигатор отключать, чтобы зарядить чьё-нибудь устройство.

Можно было сделать, как делают многие, покупают колодку на несколько адаптеров и сопли проводов тянутся по всему салону. И так требуется устройство выдающие положенные 5 вольт и мощностью 10 А. Много? Прикинем: 4 телефона, потребляют около 1 А каждый, планшет порядка 2 А, навигатор больше 0,5 А видеорегистратор тоже 0,5 А и радар-детектор около 0,5 А. И того 7, 5 А.

В процессе было собрано 3 преобразователя, но не один не мог выдерживать и 3 А продолжительное время. Один так вообще загорелся.

Нормально заработала только эта схема.

Схема преобразователя DC/DC на MC34063

Плата устройства

Сборочный чертёж

Да, моя плата далека от идеала, умение разводить плату сравнимо с талантом. Полевик с диодом расположил так, чтобы можно было прицепить практически любой радиатор, сделав плату чуть длиннее, а крепёж уже по месту. Специально подгонять плату под корпус не стал в виду отсутствия такового. Все детали нашлись в первом раскуроченном блоке питания компьютера.

Для изготовления устройства понадобилось:

1. Конденсатор керамический С1 470 пФ (1шт)
2. Конденсатор электролитический С3,С5,С6 1000 мкФ, 16В (3шт)
3. Конденсатор электролитический С2 100 мкФ, 16В (1шт)
4. Конденсатор электролитический С4 470 мкФ, 25В лучше 50В(1шт)
5. Индуктивности DR1, DR2 типа гантелька (2шт)
6. Трансформатор импульсный DR3 кольцевой (1шт)
7. Индуктивность типа пенёк DR4 (1шт)
8. Винтовой клемник J1 (1шт)
9. Резистор R1 1,2 кОм (1шт)
10. Резистор R2 3,6 кОм (1шт)
11. Резистор R3 5,6 кОм (1шт)
12. Резистор R4 2,2 кОм (1шт)
13. Резистор R5 2,2 кОм или 1 кОм на 1ват (1шт)
14. Микроконтроллер U1 MC34063
15. Диод VD1, VD3 FR155 (2шт)
16. Диод VD2 SBL25L25CT (1шт)
17. Транзистор биполярный VT1 2SC1846 (1шт)
18. Полевой транзистор IRL3302 (1шт)
19. Панелька DIP8 (1шт)
20. Корпус по произвольным размерам

Основные компоненты: это сама микросхема U1, импульсный трансформатор DR3, мощный N канальный полевик VT2(может быть любым используемый в цепях питания) и диодная сборка VD2. Трансформатор VD3 изготовил из такого же трансформатора с того самого БП. Кольцо из пресспермалоя, желтого цвета. 27мм. Первичную обмотку набил проводом 2мм 22 витка, вторичную обмотку намотал проводом тоньше, 0,55 мм 44 витка.

Индуктивности DR1 DR2 типа гантелька взял как есть из БП. Индуктивность типа пенёк DR4 тоже самое. Транзистор и диод разместил на радиаторе от того же БП.

Всё собрал на печатной плате собственной разработки. В ходе лабораторных испытаний пришлось внести изменения в предложенную автором схему. Дело в том что сам автор указывает на то что резистор R5 греется, даже замена на более мощный резистор проблему не решает. В течении часа резистор этот у меня почернел и обуглился.

Решил попробовать увеличить сопротивление до 2,2кОм и всё греться он перестал. Транзистор VT1, перестраховался, заменил на более мощный. Трансформатор DR3 тоже сначала не много грелся, перемотал, добавил количество витков в первичную и во вторичную обмотки, стало 30 и 60.

Не знаю, что там с фронтами открытия полевого транзистора но схема работает нормально, при нагрузке в 2А устройство остаётся холодным. Радиаторы на транзистор и диод можно большие не ставить. Поставил на выходе +5В ферритовое кольцо, для уменьшения помех.

Вот мой первый, рабочий, испытательный прототип.

Испытание на сопротивление 1Ом сопротивление быстро нагрелось сила тока на фото.

И последние, кипятильник на 5В в работе. Смотрите силу тока на фото. Да вот тут уже начали греться транзистор с диодом.

Испытывал свой преобразователь на 5 А работал почти весь день так немного тёплый. Потом нашёл старый блок питания от монитора которого уже нет. Плату пустил в разбор, в корпус уместил свою схему. Транзистор и диод расположил на кулере от старого ноутбука. В противоположной стороне коробки просверлил ряд отверстий. Очень даже получилось ничего. Воздух будет прокачиваться через всю схему.

Готовое устройство на установку в автомобиль.

Розетки двойные под USB планирую врезать в одну в переднюю панель вместо кнопки-зглушки и вторую к задним пассажирам в подлокотник передних сидений. Также думаю одинарную розетку в панель передней левой стойки и подвести питание к видеорегистратору который находится у зеркала. По данной схеме можно собрать вообще универсальный блок питания, то есть добавить каскад преобразования из 12В в 19В для питания ноутбука, что планирую в будущем.

Архив к статье: скачать…

Автор; Максим Батурин   г.Мурманск

Похожие статьи:

xn—-7sbgjfsnhxbk7a.xn--p1ai

Простой преобразователь напряжения 12в — 5в на usb

Для зарядки мобильных устройств обычно используются 5-вольтовые блоки питания, работающие от сетевого напряжения. Напряжение в 5 В можно также получить из 12-вольтовой сети автомобиля или от сетевого блока питания на 12 В. Это можно осуществить, используя несложные схемы с различными стабилизаторами напряжения.

В таких схемах стабилизатор будет ощутимо греться, что ухудшит его параметры выходного тока. Чтобы стабилизатор не перегрелся и не вышел из строя, его необходимо поместить на теплоотвод. Напряжение на входе в стабилизатор не должно быть выше 15 В.

Большинство мобильных устройств определяют подключение к зарядному устройству по наличию перемычки между вторым и третьим пинами. Но схемы коммутации USB могут быть и другими. Об этом лучше почитать в статье о проблемах зарядки через USB.

В схеме используются всего три компонента: сам стабилизатор напряжения и два 16-вольтовых конденсатора номиналом 100 и 330 нФ.

Стабилизаторы напряжения можно использовать советские: 2-амперный КР142ЕН5А или 1,5-амперный КР142ЕН5B. Естественно, возможна их замена на зарубежные аналоги, указанные на картинке, где изображен преобразователь на стабилизаторе КР142ЕН5:

В том случае если ваш преобразователь имеет на выходе ток не больше 0,1 А, то можно воспользоваться стабилизаторами, исполненными в корпусе SO-8, SOT-89 или TO-92. Схемы с такими конвертерами представлены на рисунках ниже:

Стоит добавить, что наипростейший способ сделать преобразователь — это вытащить плату из готового автомобильного адаптера для прикуривателя. Плату этого адаптера необходимо приспособить для работы вне автомобиля. Об этом можно найти много информации.

Дополнительная информация:

Такие стабилизаторы напряжения можно найти в телевизорах с кинескопами. Чаще всего там встречаются микросхемы серии 7805 и 7809.

При отсутствии конденсаторов схема вполне работоспособна. Стабилизатор обладает защитой от перегрева, правда, диапазон достаточно большой — от 65 до 140. Потом наблюдается резкое падение напряжения, и появляются пульсации микросхемы.

Другими словами, если схема питается от батареи, то во входном конденсаторе нет необходимости. Конденсатор на выходе рекомендуется ставить номиналом 1 мкФ и менее, иначе его разряд может сжечь схему, если произойдет короткое замыкание на входе (с той стороны, где располагается батарея).

Чтобы схема была более стабильной, рекомендуется на выходе установить дроссель и пару конденсаторов: керамический номиналом 100-200 нФ и ниобиевый номиналом 500 нФ.

Броски от индуктивной нагрузки не критичны для этой схемы.

Автор: Алексей Алексеевич. 


 

volt-index.ru

Преобразователь напряжения 12-5В своими руками

В настоящее время импульсные преобразователи используются практически везде и всё чаще заменяют классические линейные стабилизаторы, на которых при больших токах выделяется значительная мощность в виде тепловых потерь. Предлагаемая схема является простым понижающим преобразователем Step-Down с напряжения 12 В на стандартное для USB 5 В и собирается она на основе популярной микросхемы LM2576T.

Устройство предназначено для работы с автомобильной проводкой 12 В и может использоваться для зарядки или питания GPS-навигаторов, мобильных телефонов, планшетов оснащенных разъемом USB.

В состоянии покоя система полностью отключена от питания авто, а во время работы выключается сразу же после отключения тока, потребляемого с его выхода (например, при отключении провода от USB-разъема). Запуск системы осуществляется через кратковременное нажатие на кнопку, но если в данный момент выход не подключен — преобразователь снова автоматически выключится.

Принципиальная схема преобразователя LM2576T

Схема преобразователя на микросхеме LM2576

Основой является уже упомянутый ранее чип U1 (LM2576T-ADJ), дроссель L1 (100uH) и диод Шоттки D1 (1N5822). Конденсатор C1 (100uF) фильтрует напряжение питания. Выходной фильтр представляет собой конденсатор C4 (470uF), а стабилитрон D4 (BZX85C5V1) мощностью 1.3 Ватт может защитить систему от возможного кратковременного повышения напряжения питания (жалко будет спалить дорогой смартфон из-за случайных ошибок).

Принцип действия устройства

Для начала стоит написать несколько слов о самой микросхеме LM2576T — контроллере преобразователя. Схема обеспечивает превосходную альтернативу для типовых 3-х контактных линейных стабилизаторов семейства LM317, предлагая гораздо более высокую эффективность и позволяя снизить потери. Очень большое преимущество микросхемы LM2576T — возможность отключения и перехода в режим Standby, в котором потребляемый ток всего 50 мкА. Эта функция не используется в данной схеме преобразователя, но стоит иметь в виду на будущее. LM2576T содержит в своем составе все необходимые компоненты для преобразователя, вместе с силовым транзисторным ключом, который может работать с токами до 3 А. Сборка требует подключения только нескольких внешних компонентов.

Важным элементом является делитель напряжения R10 (1,2 k), R11 (3,6 к), так как он отвечает за величину выходного напряжения. Степень деления подобрана так, чтобы при выходном напряжении 5 В на входе компаратора микросхемы U1 присутствовало напряжение 1.23 В. Внутренний компаратор микросхемы управляет транзистором, чтобы напряжение на выходе достигло нужного значения. Всё это дело стабилизирует напряжение и при изменении тока нагрузки.

Преимуществом данной схемы является возможность автоматического выключения питания после отключения тока, потребляемого от преобразователя. Отвечает за это транзистор T1 (BD140), а также резисторы R6 (10k) и R4 (1k). В выключенном состоянии резистор R6 обеспечивает правильное отключение транзистора T1. Запуск системы осуществляется через кратковременное замыкание кнопки S1 (типа сенсорная). Преобразователь включается, а транзистор T4 (2N7000) поддерживает далее низкий потенциал на базе T1. Резистор R4 ограничивает ток базы транзистора Т1.

Для контроля тока потребляемого нагрузкой, используется операционный усилитель U2 (LM358), в котором задействуется только одна половина. Он работает с усилением, равным 1000, установленным через резисторы R12 (100k) и R13 (100 Ом). Конденсатор C2 (100nF) фильтрует напряжение питания усилителя. Для управления транзистором T4 используется делитель напряжения R9 (10k), R7 (10k), осуществляющий деление выходного напряжения ОУ на 2.

Незначительное падение напряжения на измерительном резисторе R14 (0,2 Ома) порядка 5 мВ, нужно для поддержания работы преобразователя. Таким образом, для поддержания включенного состояния инвертора, достаточно потребляемого нагрузкой тока 25 мА.

Двухцветный светодиод D2 выполняет роль индикатора питания.

Когда же напряжение на выходе слишком высокое, открывается стабилитрон D3 (BZX55C5V1), а на резисторе R8 (2,2 k) появляется потенциал, достаточный для открытия транзистора T3 (2N7000). Сразу T2 (2N7000) будет закрыт и загорится красный светодиод. Ток светодиодов ограничен через резисторы R2 (560 Ом) и R3 (1k). При нормальной работе транзистор T2 пропускает ток (через R5) и горит зеленый светодиод.

Печатная плата инвертора 12/5 вольт

Печатная плата инвертора на м/с 2576

Печатная плата в PDF доступна для скачивания по ссылке всем посетителям сайта 2 Схемы. Монтаж преобразователя не сложен, все помещается на односторонней печатке. Пайку следует начинать с маленьких радиоэлементов — резисторов, потом диоды, транзисторы, и заканчивая конденсаторами и разъемами. Под микросхему не следует использовать панельки, особенно если система будет работать в автомобиле, так как из-за вибраций м/с может вылететь из гнезда. Если схема будет работать постоянно и в сложных условиях, без притока воздуха, то стоит прикрутить небольшой радиатор (кусок пластины) на транзистор Т1.

Как упростить конструкцию

Как уже говорилось, DC-DC инвертор имеет функцию автоматического отключения. Но можно при желании от нее отказаться, что неплохо упростит конструкцию. Резистор R14 тогда надо заменить перемычкой, а операционный усилитель U2 и элементы, которые с ним работают, не будут нужны вообще. Не нужна также установка транзистора T4. Вместо кнопки можно использовать любой переключатель соответствующей мощности, что позволит включить преобразователь тумблером. В случае, если схема будет работать в постоянном режиме, не нужен и транзистор T1 — соедините его эмиттер с коллектором с помощью перемычки.

2shemi.ru

DC-DC конвертер 12В — 5В 3А 15Вт

Всем привет! Это не обзор, а так сказать, мини-тест DC-DC конвертера 12В — 5В 3А. Подобный преобразователь напряжения уже рассматривался на Mysku (к сожалению, я его не смог найти, но надеюсь, что всё-таки найду), и тот обзор склонил меня к покупке аналогичного DC-DC конвертера, но у другого продавца, и немного другого исполнения, поэтому речь пойдёт об различиях этих моделей.

С момента заказа прошло ровно три недели, и преобразователи приехали ко мне в мелком пакете. Трэк-номера мне не дали. Вот фото:


Надо сказать, что заказывая эти преобразователи, я планировал их немного переделать, а именно изменить цепь, задающую выходное напряжение, чтобы получить на выходе напряжение 3,3в, при нужном мне токе не более 1А. Что мне удастся это сделать, я был просто уверен.

Первым делом я снял с одного преобразователя заднюю крышку, чтобы вынуть печатную плату и надругаться над ней. И тут меня ждало горькое разочарование! Печатная плата со всем содержимым была залита жёстким непрозрачным компаундом, из которого торчали только входные и выходные провода! Это было очень неожиданно и неприятно. По этой причине фотографий с расчленёнкой не будет, как не будет и переделки преобразователя на 3,3 вольта. Но главное, что когда я ещё раз внимательно прочитал описание конвертера на сайте, то понял, что он и должен быть залитым, это указано прямым текстом. В общем сам дрова.

Вот фотки со снятой нижней крышкой, правда фоткал на сей раз мобльником.



Что там у преобразователя внутри, совершенно непонятно, а очень хотелось бы знать. Единственное, что удалось разглядеть, так это слегка выступающий из компаунда уголок электролитического конденсатора, зелёного с золотым, то есть вроде не самого плохого, но то, что он стоит так криво, совсем не радует. Общая глубина заливки порядка 12мм, то есть плата с элементами имеет высоту не более 10мм. Компаунд жёсткий, эпоксидный, как и говорится на сайте, но если заливка выполнена без предварительного обволакивания, то есть вероятность растрескивания элементов конвертера. Как правило производители даже пассивных компонентов запрещают прямую заливку «жёсткими» компаундами.

Оставалось только испытать преобразователь как есть, так как применение для него, в принципе, уже найдено. Погонял я его в трёх режимах, на выходном токе в 1А, 2А и 3А, при входном напряжении от 12 до 17 вольт. При токе в 1А нагрев незначительный, при токе в 2А нагрев уже заметный, причём, видимо, теплопроводность компаунда выше, чем пластика, и снаружи преобразователь куда холоднее, чем если пощупать сам компаунд. Думаю, при токе в 2А преобразователь может работать неограниченно долго даже при повышенной до 40-50 градусов внешней температуре. При токе нагрузки в 3А преобразователь нагревался очень заметно снаружи, а прикосновение к компаунду уже обжигало, так что я бы не стал использовать его долгое время в таком режиме, да ещё при повышенной температуре. 2А для многих применений достаточно.

Напряжение на выходе было очень стабильным, без нагрузки составляло 5,12в, с нагрузкой 1А — 5,10В, с нагрузкой 2А — 5,08В, с нагрузкой 3А — 5,07В. Думаю, это больше влияло сопротивление проводов, а у самого преобразователя просадка вообще практически нулевая.

Испытал также, какое минимальное напряжение на входе преобразователя. Так, при токе нагрузки в 2А напряжение на выходе начинало снижаться при снижении входного напряжения ниже 7 вольт. По моему нормально.

mysku.ru

КАК ПОДНЯТЬ НАПРЯЖЕНИЕ С 5 ДО 12В

Повышающий DC-DC преобразователь 5-12 вольт, проще всего собрать на LM2577, которая обеспечивает выход 12V, используя входной сигнал 5V и максимальный ток нагрузки 800 мА. М\С LM2577 — это повышающий прямоходовый импульсный преобразователь. Она доступна в трех различных версиях выходного напряжения: 12 В, 15 В и регулируемая. Вот подробная документация.

Принципиальная схема инвертора 5-12В

Схема на ней требует минимального количества внешних компонентов, а также такие регуляторы экономически эффективным и простые в использовании. Другие особенности: встроенный генератор на фиксированной частоте 52 кГц, который не требует никаких внешних компонентов, мягкий режим запуска для снижения пускового тока и режим регулирования по току для улучшения отклонении входного напряжения и выходной переменной нагрузки.

Характеристики преобразователя на LM2577

  • Входное напряжение 5 В постоянного тока
  • Выходное 12 В постоянного тока
  • Нагрузочный ток 800 мА
  • Функция плавного пуска
  • Отключение при перегреве

Здесь применена регулируемая микросхема LM2577-adj. Для получения других выходных напряжений надо изменить величину резистора обратной связи R2 и R3. Выходное напряжение рассчитывается по формуле:

V Out = 1.23V (1+R2/R3)

В общем LM2577 стоит недорого, дроссель в этой схеме унифицированный — на 100 мкГн и предельный ток 1 А. Благодаря импульсной работе каких-то больших радиаторов для охлаждения не требуется — так что эту схему преобразователя можно смело рекомендовать для повторения. Особенно она пригодится в случаях, когда из USB выхода надо получить 12 вольт.

Ещё один вариант похожего устройства, но на базе микросхемы MC34063A  — смотрите в этой статье.

   Схемы блоков питания

elwo.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о